
Homework 6 part 2: Turtle Etch-A-Sketch (40pts)

DUE DATE: Friday March 28, 7pm with 5 hour grace period

Now that you have done part 1 of Homework 6, Train Your Turtle to Draw on Command, you
are ready to move to the second portion of the assignment. Use your own solution to part 1 or
the provided one to complete part 2. Every time you see a CHECKPOINT marker, you should
definitely stop and check the functionality of your work. It is also recommended that you
compile often as well.

TurtleDrawingFileIO
The first thing to do for this homework is to convert the methods from TurtleDrawing into
static methods for TurtleDrawingFileIO. If you followed the instructions for naming for
homework 6 part 1, this portion of the homework should be as simple as copy, paste and
change the method header. You also have to go through and change what some of the methods
return. The following table (Table 6.1) outlines the changes you need to make:

Table 6.1 Conversions for the TurtleDrawingFileIO class

Original Method Header New Method Header What Else to Change

public void
extractCommands(String
turtleCommands) throws
java.io.FileNotFoundException

public static LinkedList<TurtleCommand>
extractCommands(String turtleCommands)
throws java.io.FileNotFoundException

Add
LinkedList<TurtleComman
d> commands = new
LinkedList<TurtleComman
d>(); at the beginning of
the method

Return the LinkedList
commands at the end

public void
addMoreCommandsFromFile(S
tring moreCommands) throws
java.io.FileNotFoundException

public static LinkedList<TurtleCommand>
addMoreCommandsFromFile(LinkedList<Tur
tleCommand> commands, String
moreCommands) throws
java.io.FileNotFoundException

Return the LinkedList
commands at the end

public void outputToFile(String
outputFile) throws
java.io.FileNotFoundException,
java.io.IOException

public static void
outputToFile(LinkedList<TurtleCommand>
commands, String outputFile) throws
java.io.FileNotFoundException,
java.io.IOException

Nothing

public String toString()

public static String
convertCommandsToString(LinkedList<Turtl
eCommand> commands)

Nothing

TurtlePanel
Write a new class called TurtlePanel that extends JPanel. In the TurtlePanel class,
you will be required to write two new constructors and at least four new methods:
drawCommands, drawCommand, save, load and clear.

public TurtlePanel()
The default constructor will set up a World of default size 500 by 500. Remember to hide the
World and add it to the panel (just do this.add(world) where world is a World). You also
need to create a new Turtle and place him on the World. You need to save this Turtle’s pen
color and also set his speed to be 50. Since TurtlePanel will keep track of a LinkedList of
TurtleCommand objects, it must be initialize to an empty LinkedList in the constructor.
Because you will need to access these variables in other methods, they will all need to be global
variables (also known as attributes).

public TurtlePanel(int width, int height)
The only difference in this constructor is that the World will not be a default 500 by 500 but
instead is created based on the parameters.

public void setTurtleSpeed(int turtleSpeed) and public int getTurtleSpeed()
You should write a getter and a setter for the Turtle’s speed, because it will be useful later
on.

public void drawCommands(LinkedList<TurtleCommand> commands)
Take a look at TurtleDrawing and copy and paste the drawCommands method into
TurtlePanel. Just modify the method header so that takes in a LinkedList of commands to
draw. Remove the lines regarding what do about a world command since it is no longer
necessary and also the lines to pause after each command. You should also add the incoming
the LinkedList of new commands to the list of old commands.

CHECKPOINT
After you have completed the conversion, test your methods in the main method of
TurtleDrawingFileIO to make sure everything still works before moving on (Remember
that all of do not need to write a constructor for TurtleDrawingFileIO).

public void save() throws java.io.FileNotFoundException, java.io.IOException
This method is where you will save your drawing to a text file. Instead of passing in a file path
into the method, you should use FileChooser.pickAFile() to get your file path. You
actually type in file name if a text file does not exist already. Then you should the
outputToFile method from TurtleDrawingFileIO passing in the commands
LinkedList and the file path you got from the pickAFile method.

public void clear()
This method is where you clear the World. To remove all lines from the World, you have to
remove the Turtle. Do world.remove(turtle) where world is the World and turtle is
the Turtle. Then you have to put a new Turtle on the World. Remember to hide him again.

CHECKPOINT
Time for another checkpoint to check your work. You should write another main method
for this class, but it is a little different from any you have written before. We will walk you
through this first one, but you will be expected to write similar ones for later checkpoints.

First you should create a new TurtlePanel. Since every GUI component must exist in a
JFrame in one way or another, you also need to create a JFrame. You should get in the
habit of setting the default close operation to the static final value,
JFrame.EXIT_ON_CLOSE, because it will close the process when you click the X on the
window. Now comes some pretty standard lines. You have to get what is currently on the
frame and add your TurtlePanel to it. Then you pack up the frame and set it to be visible.
Then extract commands from a text file and pass the resulting LinkedList into the
drawCommands method for your TurtlePanel. See the following page for the code.

CHECKPOINT (Continued)
public static void main(String[]args)

 throws java.io.FileNotFoundException{

 TurtlePanel panel = new TurtlePanel();

 JFrame frame = new JFrame ("My Turtle Panel");

 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(panel);

 frame.pack();

 frame.setVisible(true);

 LinkedList<TurtleCommand> commands =

 TurtleDrawingFileIO.extractCommands("commands2.txt");

 panel.drawCommands(commands);

}

CHECKPOINT
Test your save method by adding it to the main method you have already written.

You also have to set the Turtle’s pen color to the default pen color saved from the
constructor otherwise his pen color will be different (just how the Turtle class works).

public void load() throws java.io.FileNotFoundException
This is the method where you load commands from a file and draw them on the screen. First
use the clear method you wrote before to clear the screen. Reset the commands
LinkedList to an empty LinkedList. Then similar to the save method, use
FileChooser.pickAFile() to get your file path. Pass this into the extractCommands
method from TurtleDrawingFileIO. Finally pass the resulting LinkedList into the
drawCommands method.

public void drawCommand(String command)
This is a method that takes in String that is "right", "left", "up" and "down" and will
create and draw a series of commands. If the "right" is passed in, the first command will be a
"setHeading" with the parameter 90 and then the second command will be a "forward"
command with the parameter equal to the Turtle’s current speed. The other Strings work
similarly (see Table 6.2). After creating the commands, add them into a LinkedList of new
commands and pass that LinkedList into the drawCommands method.

Table 6.2 Headings for the different inputs of the drawCommand method

String Heading

right 90

left 270

up 0

down 180

CHECKPOINT
Test your clear method by adding it to the main method you have already written.

CHECKPOINT
Comment out the lines testing the save and clear methods. Then test your load method
by adding it to the main method.

TurtleSketchPanel
TurtleSketchPanel is a class that extends JPanel and contains the TurtlePanel and
all the other GUI components. We will go on to describe each component of the
TurtleSketchPanel and each of their roles in the great scheme of things, but their
placement in the TurtleSketchPanel is entirely up to you. You will be required to use at
least TWO different types of LayoutManagers. All your GUI components especially those that
will have ActionListeners attached should be global variables. Read the following overview
and we will go in a more step-by-step procedure afterwards.

The overview
1. Buttons

 up, down, left and right buttons to represent the different directions you can
move your Turtle.

 A save button to save your work to a text file.

 A load button to load commands from a text file.

 A shake button to clear the workspace (world).

2. JLabel

 A speed label to label your speed text field.

3. JTextField

 A speed text field to take an amount for the Turtle to move forward each time.

4. TurtlePanel

 A TurtlePanel that will house the drawing itself.

public TurtleSketchPanel()
This constructor is where you will be initializing your components, adding ActionListeners
to them and adding them to the panel.

CHECKPOINT
Comment out the lines testing the load method. Then test your drawCommand method in
the main method by passing in the 4 different possible inputs.

CHECKPOINT
It is our strong recommendation to do this incrementally adding one component at a time.
First add the TurtlePanel and then start adding the other components one-by-one. Get
one working before moving on to another. You will need to write a main method like the
one for TurtlePanel to see the final resulting panel.

private class ButtonListener implements ActionListener
You will need to write a private inner class called ButtonListener to handle all of the button
actions in your panel. You have already had some examples of this in class and recitation. Use
those examples as a guide to writing this one. Table 6.3 outlines what actions will happen when
each button is pressed.

private class TextListener implements ActionListener
You will need to write another private inner class called TextListener to handle all of the
text actions in your panel. This class is essentially the same as the ButtonListener class.

Table 6.3 ButtonListener and TextListener and actions

GUI Component Actions

Right button drawCommand is called with "right"

Left button drawCommand is called with "left"

Up button drawCommand is called with "up"

Down button drawCommand is called with "down"

Shake button clear is called

Save button save is called

Load button load is called

Speed field The turtle’s speed is set to the input

TurtleEtchASketch
This class will extend JFrame and serve as our main container for the TurtleSketchPanel.
You need to write one constructor and a main method.

public TurtleEtchASketch(String title)
This constructor will just call the super constructor with the same input.

The main method

CHECKPOINT
Again you should do this incrementally. Make sure the ButtonListener is working for
one button before moving on to another button.

CHECKPOINT
Make sure the TextListener is working before moving on.

The main method for TurtleEtchASketch is essentially the same as the main method for
TurtleSketchPanel except the JFrame is now TurtleEtchASketch and you are required
to give the constructor an appropriate title for the frame.

Extra Credit

 +5 pts Make it so that the Turtle will move with keyboard input instead of buttons

 +5 pts Make it so that the Turtle can be dragged with a mouse click to another portion
of the screen

 Other creative ideas will also be rewarded!

What to Turn In

 TurtleDrawingFileIO.java

 TurtlePanel.java

 TurtleSketchPanel.java

 TurtleEtchASketch.java

Where to Turn In
 T-square

